# Molecular Structure of Heterobimetallic $\mu$ - $\eta^2$ -(C,C)-Ketene Complexes<sup>†</sup>

# Munetaka Akita,\* Atsuo Kondoh, and Yoshihiko Moro-oka\*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Molecular structures of the first examples of heterobimetallic  $\mu$ - $\eta^2$ -(C,C)-ketene complexes, [(OC)<sub>2</sub>(cp)Fe(CH<sub>2</sub>CO)Ni(cp)(CO)] (1) and [(OC)<sub>2</sub>(cp)Fe(CH<sub>2</sub>CO)Mn(CO)<sub>5</sub>] (2) (cp =  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>), have been determined by single-crystal X-ray diffraction studies. They comprise 1,4-dimetalla-2-butanones (M-CH<sub>2</sub>CO-M') with significant contribution from an oxycarbene structure [M-CH<sub>2</sub>C-(O<sup>-</sup>)=M'<sup>+</sup>] and a  $\pi$ -complex resonance form {M<sup>+</sup>[CH<sub>2</sub>=C(O<sup>-</sup>)-M]} in accord with previously reported spectroscopic studies.

We have been studying the reactivities of bridging ketene ligands (1-oxoethane-1,2-diyl) on polymetallic complexes as a model for surface-bound ketene species <sup>1,2</sup> which are recognized as one of the possible origins of oxygenated compounds in catalytic hydrogenation of carbon monoxide. Spectroscopic,<sup>1</sup> particularly i.r., studies of  $\mu$ -ketene complexes [1,4-dimetalla-2-butanones (A)] reveal the significant contribution of the  $\pi$ -complex form (C) in addition to the oxycarbene structure (B)



which is well established for mononuclear acyl metal complexes.<sup>3</sup> The contributors (**B**) and (**C**) arise from back donation of *d* electrons from M and M' [M' = Fe(cp)(CO)<sub>2</sub> where cp =  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>] to the bridging ketene ligand, respectively, and the latter is the so-called  $\beta$  effect.<sup>4</sup> Here we report the results of structure determinations of the first examples of heterobimetallic  $\mu$ - $\eta^2$ -(C,C)-ketene complexes, [(OC)<sub>2</sub>(cp)Fe(CH<sub>2</sub>CO)Ni(cp)-(CO)] (1) and [(OC)<sub>2</sub>(cp)Fe(CH<sub>2</sub>CO)Mn(CO)<sub>5</sub>] (2), by X-ray diffraction studies. The results obtained also confirm the cooperative metal-to-ligand back donation represented above.

#### Experimental

The synthesis and spectroscopic characterization of complexes (1) and (2) were reported in our previous paper.<sup>1d</sup>

Structure Determinations.—Diffraction measurements were made on a Rigaku AFC-5 automated four-circle diffractometer by using graphite-monochromated Mo- $K_{\alpha}$  radiation ( $\lambda =$ 0.710 68 Å). The unit cell was determined and refined by a leastsquares method using 20 independent reflections with 25 <  $2\theta < 30^{\circ}$ . Data were collected over  $2 < 2\theta < 60^{\circ}$  with the  $\omega$ —2 $\theta$ scan technique, and three standard reflections were monitored every 100 measurements. Crystal data, data-collection parameters, and results of the analyses are listed in Table 1. Neutral

† Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

| Compound                 | (1)                                                | (2)                                               |
|--------------------------|----------------------------------------------------|---------------------------------------------------|
| Formula                  | C <sub>15</sub> H <sub>12</sub> FeNiO <sub>4</sub> | C <sub>14</sub> H <sub>7</sub> FeMnO <sub>8</sub> |
| Crystal system           | Orthorhombic                                       | Monoclinic                                        |
| Space group              | Pbca                                               | $P2_1/c$                                          |
| a/Å                      | 18.886 1(52)                                       | 18.421 7(17)                                      |
| b/Å                      | 20.449 2(27)                                       | 6.870 0(16)                                       |
| c/Å                      | 7.463 3(8)                                         | 12.229 3(14)                                      |
| β/°                      |                                                    | 92.853(8)                                         |
| $U/Å^3$                  | 2 882.39(93)                                       | 1 545.78(42)                                      |
| м <sup>′</sup>           | 370.82                                             | 414.00                                            |
| Ζ                        | 8                                                  | 4                                                 |
| $D_c/g \text{ cm}^{-3}$  | 1.71                                               | 1.78                                              |
| Crystal size             | $0.3 \times 0.2 \times 0.4$                        | $0.2 \times 0.1 \times 0.3$                       |
| No. of unique data       | 2 835                                              | 3 001                                             |
| $[F > 3\sigma(\hat{F})]$ |                                                    |                                                   |
| R                        | 7.41                                               | 5.03                                              |
| R'                       | 8.56                                               | 3.10                                              |

Table 1. Crystallographic data

R

scattering factors were obtained from the standard sources.<sup>5</sup> Data were corrected for Lorentz and polarization effects but not for absorption. Computation used the R-CRYSTAN structuresolving program system obtained from the Rigaku Corp. Full-matrix least-squares refinements minimized the function  $[\Sigma w(|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{\frac{1}{2}}$  where  $w = 1/[\sigma(F_o)^2 + (pF_o)^2]$ , the parameter p being automatically optimized.

Complexes (1) and (2) crystallized in the orthorhombic (*Pbca*) and monoclinic systems ( $P2_{1/c}$ ), respectively. The positions of the metal atoms (Fe, Ni, and Mn) were located by the direct method. Subsequent Fourier difference maps revealed the positions of all the other atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms with isotropic thermal parameters. The positional parameters and selected bond lengths and angles are listed in Tables 2-5.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

## **Results and Discussion**

Perspective views of complexes (1) and (2) (ORTEP drawings at 50% probability) are reproduced in Figures 1 and 2. The overall structures are primarily 1,4-dimetalla-2-butanones. As expected

| Table 4. Positional parameters for | r non-hydroger | n atoms of | complex | (2) |
|------------------------------------|----------------|------------|---------|-----|
|------------------------------------|----------------|------------|---------|-----|

| Atom*            | x                | у                | Z                   |
|------------------|------------------|------------------|---------------------|
| CPFE             | 0.408 79         | 0.133 28         | 0.331 34            |
| CPNI             | 0.074 64         | 0.153 16         | 0.682 78            |
| Fe               | 0.355 25(3)      | 0.095 62(3)      | 0.488 28(10)        |
| Ni               | 0.145 37(2)      | 0.153 86(3)      | 0.526 02(9)         |
| C(11)            | 0.450 14(38)     | 0.145 87(50)     | 0.447 14(117)       |
| C(12)            | 0.448 70(43)     | 0.088 62(47)     | 0.340 35(129)       |
| C(13)            | 0.392 54(53)     | 0.093 51(53)     | 0.224 35(106)       |
| C(14)            | 0.357 40(38)     | 0.153 49(41)     | 0.255 97(104)       |
| C(15)            | 0.395 16(38)     | 0.184 90(40)     | 0.388 87(120)       |
| C(16)            | 0.287 07(31)     | 0.037 81(31)     | 0.450 63(84)        |
| C(17)            | 0.387 25(29)     | 0.051 70(29)     | 0.674 45(90)        |
| C(21)            | 0.115 52(32)     | 0.176 92(32)     | 0.787 20(77)        |
| C(22)            | 0.102 07(40)     | 0.108 14(34)     | 0.757 06(102)       |
| C(23)            | 0.052 78(35)     | 0.102 53(38)     | 0.625 52(101)       |
| C(24)            | 0.032 58(32)     | 0.166 98(40)     | 0.571 93(101)       |
| C(25)            | 0.070 26(34)     | 0.211 22(32)     | 0.672 20(87)        |
| C(26)            | 0.166 78(34)     | 0.132 79(29)     | 0.308 45(83)        |
| C(1)             | 0.290 84(29)     | 0.148 66(29)     | 0.663 20(74)        |
| C(2)             | 0.239 07(29)     | 0.189 95(25)     | 0.565 79(72)        |
| O(11)            | 0.245 00(25)     | -0.000 60(25)    | 0.427 94(81)        |
| O(12)            | 0.408 58(23)     | 0.022 01(23)     | 0.791 64(65)        |
| O(21)            | 0.179 26(29)     | 0.116 66(26)     | 0.165 25(62)        |
| O(1)             | 0.240 54(19)     | 0.244 80(20)     | 0.514 57(60)        |
| * CPFE is the ce | entroid of C(11) | )—C(15), CPNI tł | nat of C(21)–C(25). |

Table 2. Positional parameters for non-hydrogen atoms of complex (1)

Table 3. Selected bond lengths (Å) and angles (°) for complex (1)

| C-C(cp) <sub>av.</sub> (Fe)                     | 1.393                                   | $Fe-C(cp)_{av}$                              | 2.138                             |
|-------------------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------|
| Fe-CPFE                                         | 1.728                                   | Fe-C(1)                                      | 2.088(6)                          |
| C(16) - O(11)                                   | 1.130(8)                                | Fe-C(17)<br>C17-O(12)                        | 1.138(8)                          |
| $C-C(cp)_{av}(Ni)$                              | 1.401                                   | Ni-C(2)                                      | 2.095                             |
| Ni-CPNI                                         |                                         | Ni-C(2)                                      | 1.940(6)                          |
| C(1) - C(2)                                     | 1.728(6)<br>1.482(8)                    | C(26) - O(21)<br>C(1) - H(1A)<br>C(2) - O(1) | 1.143(8)<br>0.850(72)<br>1.205(7) |
| $C_{-}C_{-}C_{(cn)}$ (Fe)                       | 0.985(75)                               | C(2)=O(1)                                    | 1.203(7)                          |
| CP-Fe-C(16)                                     | 127.98(21)                              | CP-Fe-C(17)                                  | 124.13(19)                        |
| C1-Fe-C(6)                                      | 91.28(26)                               | C(1)-Fe-C(17)                                | 88.37(25)                         |
| C(16)-Fe- $C(17)$                               | 91.97(28)                               | Fe-C(16)-O(11)                               | 177.85(57)                        |
| Fe- $C(17)$ - $O(21)$                           | 178.11(61)                              | C-C-C(cp) (Ni)                               |                                   |
| CP-Ni-C(2)                                      | 126.04(17)                              | CP-Ni-C(26)                                  | 142.48(21)                        |
| C(2)-Ni-C(26)                                   | 91.44(27)                               | Ni-C(26)-O(21)                               | 177.23(63)                        |
| Fe-C(1)-C(2)                                    | 111.93(37)                              | Fe-C(1)-H(1A)                                | 108.68(487)                       |
| Fe-C(1)-H(1B)                                   | 103.68(408)                             | C(2)-C(1)-H(1A)                              |                                   |
| C(2)-C(1)-H(1B)<br>C(1)-C(2)-Ni<br>Ni-C(2)-O(1) | 108.03(422)<br>117.38(39)<br>118.01(42) | H(1A)-C(1)-H(1B)<br>C(1)-C(2)-O(1)           | 122.24(677)<br>124.57(52)         |
|                                                 |                                         |                                              |                                   |



Figure 1. Molecular structure of  $[(OC)_2(cp)Fe(CH_2CO)Ni(cp)(CO)]$ (1) showing 50% probability thermal ellipsoids

| Atom* | X            | У                | z             |
|-------|--------------|------------------|---------------|
| СР    | 0.913 67     | 0.089 42         | 0.189 46      |
| Fe    | 0.869 09(2)  | 0.305 79(7)      | 0.160 69(5)   |
| Mn    | 0.626 74(2)  | 0.525 95(9)      | 0.133 95(5)   |
| C(11) | 0.970 14(22) | 0.167 83(74)     | 0.177 51(50)  |
| C(12) | 0.935 75(25) | 0.158 84(71)     | 0.276 08(41)  |
| C(13) | 0.870 13(25) | 0.048 90(68)     | 0.255 26(43)  |
| C(14) | 0.865 90(23) | $-0.001\ 00(65)$ | 0.145 61(44)  |
| C(15) | 0.926 41(23) | 0.072 51(66)     | 0.092 83(41)  |
| C(16) | 0.900 62(18) | 0.487 82(62)     | 0.074 32(32)  |
| C(17) | 0.840 22(20) | 0.468 09(66)     | 0.259 08(34)  |
| C(1)  | 0.769 54(19) | 0.298 86(65)     | 0.072 38(35)  |
| C(2)  | 0.732 22(19) | 0.490 50(66)     | 0.064 40(31)  |
| C(21) | 0.667 81(22) | 0.749 68(65)     | 0.193 82(35)  |
| C(22) | 0.605 43(20) | 0.655 32(68)     | 0.005 62(35)  |
| C(23) | 0.597 52(19) | 0.293 18(68)     | 0.066 70(32)  |
| C(24) | 0.659 77(20) | 0.389 35(63)     | 0.256 29(35)  |
| C(25) | 0.537 52(22) | 0.569 69(62)     | 0.191 07(34)  |
| O(11) | 0.925 60(15) | 0.604 34(44)     | 0.019 40(23)  |
| O(12) | 0.825 61(16) | 0.574 36(50)     | 0.328 50(25)  |
| O(1)  | 0.757 81(15) | 0.627 55(47)     | 0.017 26(26)  |
| O(21) | 0.693 47(18) | 0.888 87(49)     | 0.227 71(29)  |
| O(22) | 0.594 45(16) | 0.738 51(50)     | -0.074 99(25) |
| O(23) | 0.578 78(16) | 0.153 13(47)     | 0.025 90(28)  |
| O(24) | 0.679 31(15) | 0.304 59(52)     | 0.332 51(23)  |
| O(25) | 0.482 24(15) | 0.597 44(52)     | 0.225 33(28)  |
|       |              |                  |               |

\* CP is the centroid of C(11)-C(15).

Table 5. Selected bond lengths (Å) and angles (°) for complex (2)

| $C-C(cp)_{av}$    | 1.411       | Fe-C(cp) <sub>av</sub> | 2.103       |
|-------------------|-------------|------------------------|-------------|
| Fe-CP             | 1.726       | Fe-C(1)                | 2.082(4)    |
| FeC(16)           | 1.754(4)    | Fe-C(17)               | 1.743(4)    |
| C(16)-O(11)       | 1.155(5)    | C(17)–O(12)            | 1.161(5)    |
| Mn-C(2)           | 2.173(4)    | MnCO <sub>ax</sub>     | 1.846       |
| $CO_{av}(Mn)$     | 1.139       | C(1)-C(2)              | 1.486(6)    |
| C(1)-H(1A)        | 1.124(40)   | C(1) - H(1B)           | 0.913(44)   |
| C(2)-O(1)         | 1.212(5)    |                        |             |
| CCC(cp)           | 107.99      | CP-Fe-C(1)             | 118.94(13)  |
| CP-Fe-C(16)       | 124.62(12)  | CP-Fe-C(17)            | 124.66(14)  |
| C(1)-Fe-C(16)     | 90.77(17)   | C(1)-Fe-C(17)          | 94.68(18)   |
| C(16)-Fe-C(17)    | 94.65(18)   | Fe-C(16)-O(11)         | 175.86(31)  |
| FeC(17)O(12)      | 175.25(35)  | C(25)-Mn-C(21          | · · · ·     |
| C(21)-Mn-C(22)    | 90.11(19)   | 24) <sub>av</sub>      | 93.75       |
| C(22)-Mn-C(23)    | 89.62(19)   | C(21)-Mn-C(24)         | 89.41(19)   |
| C(2)-Mn-C(21      |             | C(23)-Mn-C(24)         | 89.87(19)   |
| 24) <sub>av</sub> | 86.25       | Mn-CO <sub>av</sub>    | 178.63      |
| Fe-C(1)-C(2)      | 113.98(28)  | Fe-C(1)-H(1A)          | 106.31(202) |
| Fe-C(1)-H(1B)     | 104.24(265) | C(2)-C(1)-H(1A)        | 103.68(216) |
| C(2)-C(1)-H(1B)   | 118.88(279) | H(1A)-C(1)-H(1B)       | 109.14(339) |
| C(1)-C(2)-Mn      | 119.56(28)  | C(1)-C(2)-O(1)         | 122.00(35)  |
| Mn-C(2)-O(1)      | 118.41(31)  |                        |             |
|                   |             |                        |             |

from the spectroscopic studies there is no interaction between the two metal centres linked by the ketene bridge. The metalmetal distances are 4.148(1) Å for (1) and 4.710(1) Å for (2). The structure of the Fe(cp)(CO)<sub>2</sub> parts (three-legged piano stool) is essentially the same as those of corresponding alkyl complexes<sup>6</sup> and of [{Fe(cp)(CO)<sub>2</sub>}<sub>2</sub>CH<sub>2</sub>CO] (3).<sup>7</sup> The geometry of the Ni(cp)(CO) part in (1) shows very close similarities to that in [(OC)(cp)Ni-Mn(CO)<sub>5</sub>]<sup>8</sup> and to the Fe(cp)(CO)<sub>2</sub> group except for the number of carbonyl ligands. To our knowledge this is the first structure determination of a Ni(cp)(CO) complex containing an organic ligand. The Mn atom in (2) is surrounded by five carbonyls and the µ-ketene ligand, resulting in an octahedral co-ordination.<sup>9</sup>

#### Table 6. Structural parameters of bridging ketene ligands

|                                                                                               | M                     | $EH_2 = b$<br>$\delta = b$<br>$\delta = b$<br>$\delta = b$ |        | 0:       | =c−-ι<br>θ<br>M | м′    |       |       |       |                |        |
|-----------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|--------|----------|-----------------|-------|-------|-------|-------|----------------|--------|
| Complex                                                                                       | а                     | b                                                          | с      | d        | е               | α     | β     | γ     | δ     | θ              | ν(C=O) |
| (1) $[(OC)_2(cp)Fe(CH_2CO)Ni(cp)(CO)]$                                                        | 2.088                 | 1.482                                                      | 1.940  | 1.205    | 4.148           | 111.9 | 117.3 | 118.0 | 124.6 | 88             | 1 649  |
| (2) $[(OC)_2(cp)Fe(CH_2CO)Mn(CO)_5]$                                                          | 2.082                 | 1.486                                                      | 2.173  | 1.212    | 4.710           | 114.0 | 119.6 | 118.4 | 122.0 | 64             | 1 581  |
| (3) [{Fe(cp)(CO)_2},CH_2CO]                                                                   | 2.073                 | 1.481                                                      | 2.008  | 1.219    | 4.450           | 114.0 | 117.1 | 120.9 | 121.6 | 76             | 1 612  |
| (4) $[Os_3(CO)_{1,2}(\mu - CH_2CO)]$                                                          | 2.22                  | 1.47                                                       | 2.16   | 1.26     | 4.259           | 112.2 | 121.4 | 120.6 | 117.9 | 97             | 1 573  |
| (5) $[Ru_2(n^5-C_5Me_5)_2(CO)_3(\mu-CH_2CO)]$                                                 | 2.194                 | 1.450                                                      | 2.105  | 1.213    | 2.814           | 89.0  | 107.6 |       |       | 55             | 1 568  |
| (6) $[{Fe(cp)(CO)_2}_2CH_2CH_2CO]^*$                                                          | 2.071                 | 1.534                                                      | 1.991  | 1.203    | 5.682           | 114.6 | 117.4 | 122.3 | 120.2 | 7 <del>9</del> | 1 645  |
| $a - e$ in Å, $\alpha - \delta$ in °, $\nu$ (C=O) in cm <sup>-1</sup> . * CH <sub>2</sub> -CH | 1 <sub>2</sub> CO 1.5 | 19 Å, CH                                                   | 2-C-CO | 110.87°. |                 |       |       |       |       |                |        |



Figure 2. Molecular structure of  $[(OC)_2(cp)Fe(CH_2CO)Mn(CO)_5]$  (2) showing 50% probability thermal ellipsoids



Figure 3. Geometry of the bridging ketene ligand

The structural parameters associated with the bridging ketene ligands accompanied by previously reported data<sup>10,11</sup> are listed in Table 6. Bond lengths and bond angles for C(1) and C(2) atoms fall in the range of those for  $sp^3$ - and  $sp^2$ -hybridized carbon atoms, respectively. To be noted is that the C(1)-C(2)bond lengths (b) are substantially shorter than the CH<sub>2</sub>-CO bond length in complex (6) for which no contribution from a resonance form corresponding to (C) is detectable by spectroscopic methods. Therefore, the observed change in b should be attributed to the  $\pi$ -complex form (C) in which the C–C bond length is shortened owing to the increased double-bond character. In addition, the dihedral angle ( $\theta$ ) between the  $M-CH_2$  and C=O planes in complex (1) (Figure 3) is almost a right angle. This conformation maximizes the overlap between the electron-diffusing  $Fe-CH_2$  bond and the electron-deficient p orbital on the C(2) atom which projects perpendicular to the C=O bond. Similar results have been reported for  $\mu$ - $\eta^2$ -(C,C)ketene complexes (3) and (4),<sup>10</sup> although some deviations in  $\hat{\theta}$ are observed for µ-ketene complexes with a bulky metal part, (2), and with a cyclic structure,  $(5)^{11}$  The Fe–CH<sub>2</sub> bond lengths (a) are almost identical irrespective of the acyl-metal groups. On the other hand, the bond length c varies depending upon the radius of the metal atom. The Mn-C(2) distance (c) is significantly longer than those reported for CH<sub>3</sub>COCO-Mn- $(CO)_5 (2.075 \text{ Å})^9$  and  $CF_3CF_2CO-Mn(CO)_5 (2.047 \text{ Å})^{12}$  No systematic relationship between the length d and the stretching vibration of the acyl C=O bond has been detected as shown in Table 6. While according to the extended Hückel molecularorbital calculation by Hoffmann<sup>13</sup> the 'upright' and 'bisecting' conformations are predicted for olefin and carbene ligands, respectively, the conformations around the metal-carbon bonds do not reflect the resonance forms (B) (with carbene complex character) and (C) (with olefin complex character) but are apparently determined by non-bonding steric repulsions between the bridging ketene ligand and the ancillary ligands. With regard to the conformations around the Fe-C(1) bonds, CPFE (centroid of C<sub>5</sub>H<sub>5</sub> group) and C(2) in (1) [with a less bulky Ni(cp)(CO) group] are located in a gauche-staggered conformation [CPFE-Fe-C(1)-C(2) 59.42°], while an antiperiplanar conformation is observed for (2) [with a more bulky Mn(CO)<sub>5</sub> group]. (For an ideal upright conformation the dihedral angle should be 90°.) As to the conformations around the M-C=O bonds, the acyl C=O bond is located parallel to the cp plane in (1) [CPNI-Ni-C(2)-C(1) 81.82°] and in a staggered conformation in (2)  $[C(23)-Mn-C(2)-C(1) 46.74^{\circ}]$ . [For an ideal bisecting conformation the dihedral angle in (1) should be 180°.] Thus, the orbital interaction between the metal centre and the bridging ketene is too small to determine the conformations.

Consequently, the structure determinations by X-ray diffraction studies as well as the previously reported spectroscopic studies reveal that the geometry around the C–C bond of the bridging ketene ligand is determined by the  $\pi$ -complex resonance form (**C**) which is generally observed for polymetallic  $\mu$ - $\eta^2$ -(C,C)-ketene complexes, and that the co-operative metalto-ligand back donation doubly activates the ketene ligand as a nucleophile.<sup>1b,c,3,14</sup>

### Acknowledgements

We are grateful to the Asahi Glass Foundation for Industrial Technology and the Ministry of Science, Culture, and Education for financial support of this research.

#### References

 (a) M. Akita, A. Kondoh, and Y. Moro-oka, J. Chem. Soc., Chem. Commun., 1986, 1296; (b) M. Akita, A. Kondoh, T. Kawahara, and Y. Moro-oka, J. Organomet. Chem., 1987, 323, C43; (c) M. Akita, T. Kawahara, and Y. Moro-oka, J. Chem. Soc., Chem. Commun., 1987, 1356; (d) M. Akita, A. Kondoh, T. Kawahara, T. Takagi, and Y. Moro-oka, Organometallics, 1988, 7, 366.

- 2 G. L. Geoffroy and S. L. Bassner, Adv. Organomet. Chem., 1988, 28, 1 and refs. therein.
- 3 S. L. Bassner, E. D. Morrison, and G. L. Geoffroy, *Organometallics*, 1987, 6, 2207.
- 4 J. K. P. Ariyaratne, A. M. Bierrum, M. L. H. Green, M. Ishaq, C. K. Prout, and M. G. Swanwick, J. Chem. Soc. A, 1969, 1309.
- 5 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
- 6 See for example, L. Pope, P. Sommerville, and J. Laing, J. Organomet. Chem., 1976, 112, 309.
- 7 M. Akita, A. Kondoh, and Y. Moro-oka, J. Chem. Soc., Dalton Trans., 1989, 1083.
- 8 T. Madach, K. Fischer, and H. Vahrenkamp, Chem. Ber., 1980, 113, 3235.

- 9 C. P. Casey, C. A. Bunnell, and J. C. Calabrese, J. Am. Chem. Soc., 1976, 98, 1166.
- 10 E. D. Morrison, G. R. Steinmetz, G. L. Geoffroy, W. C. Fultz, and A. L. Rheingold, J. Am. Chem. Soc., 1984, **106**, 4783.
- 11 N. M. Doherty, M. J. Fildes, N. J. Forrow, S. A. R. Knox, K. A. Macpherson, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1986, 1355.
- 12 M. R. Churchill, Perspect. Struct. Chem., 1970, 3, 126.
- 13 B. E. R. Schilling, R. Hoffmann, and D. L. Lichtenberger, J. Am. Chem. Soc., 1979, 101, 585.
- 14 M. Akita, T. Kawahara, M. Terada, and Y. Moro-oka, Organometallics, 1989, 8, 687.

Received 14th November 1988; Paper 8/04513E